MechanoUrology Team Image

MechanoUrology

Overactive bladder (OAB) occurs during bladder filling and affects ~20% of the adult US population. The current tool for evaluating bladder filling is a urodynamics study which uses a catheter to fill the bladder while pressure is measured. Tension sensitive nerves in the bladder wall are responsible for providing bladder fullness information to the brain and increased bladder wall tension during filling is thought to be a critical factor in OAB. However, pressure often increases little during bladder filling and does not accurately reflect changes in bladder wall tension. Therefore, effective assessment of OAB using standard clinical urodynamics testing is difficult or impossible, and a new diagnostic test for OAB that includes the evaluation of bladder wall tension is needed. In addition to pressure, the biomechanical parameters that can directly affect the load on the bladder wall tension sensors during filling include bladder geometry, acute changes in bladder elasticity, and spontaneous rhythmic bladder contractions. Our team has discovered that the bladder is a smart material that can acutely regulate its preload tension, and we have clinically quantified this “dynamic elasticity” in patients with OAB.

The team will be working to develop improved clinical biomechanical diagnostics for OAB and other bladder disorder and to understand the complex biomechanical and biochemical mechanisms responsible for dynamic elasticity in humans and animal models of OAB.

The team is looking for interested sophomore, junior, and senior undergraduate Mechanical, Biomedical, Electrical, Computer, Chemical & Life Science Engineering, Computer Science and other majors interested in biomechanical modeling, bladder & smooth muscle experimental biomechanics, ultrasound image & cine analysis, signal processing, software and GUI development, biochemistry, physiology and urology.

Projects may include:

Interested? Contact Prof. Speich (jespeich@vcu.edu)